Математический инструментарий принятия решений
Этот инструментарий (экономико-математические модели и методы - ЭМММ) представляет собой логический системный подход к решению проблемы управления. Схематически его можно изобразить, как это показано на рис. 1.4.
С точки зрения ЭМММ центральным моментом становится конструирование модели - абстрактного представления существующей проблемной ситуации. Обычно такая модель представляется в виде математического соотношения или графика.
Рис. 1.4 Использование ЭМММ при принятии решения
Предположим, фирма продает продукт по цене 20$, а его себестоимость - 5$. Полная прибыль: z = 20x-5x,
где x - число проданных единиц продукта, x и z - переменные, причем x - независимая, z - зависимая переменная; числа 20 и 5 - параметры.
Это соотношение - модель определения прибыли фирмы. Предположим, что продукт делается из стали и что фирма имеет 100 кг стали в своем распоряжении. На единицу продукта идет 4 кг стали. Следовательно, 4x = 100 кг.
Теперь модель выглядит так:
z = 20x - 5x. (1)
4x = 100. (2)
Здесь уравнение (1) - целевая функция, а уравнение ресурсов (2) - ограничение, то есть управленческое решение будет моделироваться так:
max z = 20x - 5x при 4x = 100.
Итак, если менеджер решает продать 25 единиц продукта (x = 25), фирма получит прибыль z = 375$. Эта величина не действительное решение, а скорее информация, которая служит рекомендацией или руководством, помогающим менеджеру принять решение.
Некоторые модели не дают ответа и рекомендаций по решению. Однако они обеспечивают описательные результаты: эти результаты описывают моделируемую систему (например, дисперсия продаж некоторых товаров по месяцам в течение года).
Менеджер не прямо применяет полученный результат как решение, а сопоставляет его со своими оценками и прогнозами. Если менеджер не использует результаты ЭМММ, то они нереализуемы. Если это так, то должны быть введены дополнительные ресурсы или усилия при решении проблемы, конструировании модели и ее решении.
Результаты моделирования и решения основаны на сравнении путем обратной связи с первоначальной моделью, которая может модифицироваться при испытаниях в различных условиях и будущих решениях менеджера. Результаты могут указывать, что проблема полностью не охвачена ранее и это требует изменений или реконструкции первоначальной модели. В этом случае ЭМММ представляют непрерывный процесс, а не одиночное решение одиночной проблемы.
Классификация ЭМММ приведена на рис. 1.5. Далее содержится краткая оценка их практической применимости в современном менеджменте.
Наиболее популярна техника линейного программирования. К ней проводят задачи, связанные с ограничениями (по ресурсам, времени, рабочей силе, энергии, финансам, материалам) и с целевой функцией типа максимизации прибыли. Существенным является линейность функциональных соотношений в математической модели. Конкретная техника решений состоит в использовании алгоритма последовательных шагов (т. е. программы).
При использовании вероятностных процедур, в отличие от линейного программирования, результаты носят вероятностный характер и должны содержать некоторую неопределенность и возможность присутствия альтернативных решений.
Процедуры управления запасами специально разработаны для анализа проблем запасов, что характерно для большинства коммерческих фирм. Эта частная функция управления вносит существенный вклад в издержки любого бизнеса.
Сетевые модели скорее более диаграммы, чем точные математические соотношения. Они представляют в наглядной форме систему действий для их анализа.
Другие процедуры являются многоступенчатыми (программными), но отличными по постановке от линейной задачи.
В практическом менеджменте наибольшее значение придается:
- имитационным моделям;
- линейному программированию;
- графам (деревьям) решений;
- сетевым моделям;
- теории очередей (задачам массового обслуживания);
- анализу замещения;
- интегральному программированию.