Основные термины математического моделирования
Прежде чем начать рассматривать конкретные математические модели процессов управления, необходимо дать определения основных терминов:
· компоненты системы - части системы, которые могут быть вычленены из нее и рассмотрены отдельно;
· независимые переменные - они могут изменяться, но это внешние величины, не зависящие от проходящих в системе процессов;
· зависимые переменные - значения этих переменных есть результат (функция) воздействия на систему независимых внешних переменных;
· управляемые (управляющие) переменные - те, значения которых могут изменяться исследователем;
· эндогенные переменные - их значения определяются в ходе деятельности компонент системы (т.е. «внутри» системы);
· экзогенные переменные - определяются либо исследователем, либо извне, т.е. в любом случае действуют на систему извне.
При построении любой модели процесса управления желательно придерживаться следующего плана действий:
1) Сформулировать цели изучения системы;
2) Выбрать те факторы, компоненты и переменные, которые являются наиболее существенными для данной задачи;
3) Учесть тем или иным способом посторонние, не включенные в модель факторы;
4) Осуществить оценку результатов, проверку модели, оценку полноты модели.
Модели можно разделить на виды (рис. 1.2):
Рис. 1.2 Виды моделей
Их определения:
v Функциональные модели - выражают прямые зависимости между эндогенными и экзогенными переменными.
v Модели, выраженные с помощью систем уравнений относительно эндогенных величин. Выражают балансовые соотношения между различными экономическими показателями (например, модель межотраслевого баланса).
v Модели оптимизационного типа. Основная часть модели - система уравнений относительно эндогенных переменных. Цель - найти оптимальное решение для некоторого экономического показателя (например, найти такие величины ставок налогов, чтобы обеспечить максимальный приток средств в бюджет за заданный промежуток времени).
v Имитационные модели - весьма точное отображение экономического явления. Математические уравнения при этом могут содержать сложные, нелинейные, стохастические зависимости.
С другой стороны, модели можно делить на управляемые и прогнозные. Управляемые модели отвечают на вопрос: «Что будет, если .?»; «Как достичь желаемого?», и содержат три группы переменных:
1) переменные, характеризующие текущее состояние объекта;
2) управляющие воздействия - переменные, влияющие на изменение этого состояния и поддающиеся целенаправленному выбору;
3) исходные данные и внешние воздействия, т.е. параметры, задаваемые извне, и начальные параметры.
В прогнозных моделях управление не выделено явно. Они отвечают на вопросы: «Что будет, если все останется по-старому?»
Модели можно делить по способу измерения времени на:
· непрерывные;
· дискретные.
Если в модели присутствует время, то модель называется динамической. Чаще всего в моделях используется дискретное время, т.к. информация поступает дискретно: отчеты, балансы и иные документы составляются периодически. Но с формальной точки зрения непрерывная модель может оказаться более простой для изучения. В физической науке продолжается дискуссия о том, является ли реальное физическое время непрерывным или дискретным.